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Stresses in a Multilayer Thin
Film/Substrate System Subjected
to Nonuniform Temperature
Current methodologies used for the inference of thin film stress through curvature mea-
surements are strictly restricted to uniform film stress and system curvature states over
the entire system of a single thin film on a substrate. By considering a circular multilayer
thin film/substrate system subjected to nonuniform temperature distributions, we derive
relations between the stresses in each film and temperature, and between the system
curvatures and temperature. These relations featured a “local” part that involves a direct
dependence of the stress or curvature components on the temperature at the same point,
and a “nonlocal” part, which reflects the effect of temperature of other points on the
location of scrutiny. We also derive relations between the film stresses in each film and
the system curvatures, which allow for the experimental inference of such stresses from
full-field curvature measurements in the presence of arbitrary nonuniformities. These
relations also feature a “nonlocal” dependence on curvatures making full-field measure-
ments of curvature a necessity for the correct inference of stress. The interfacial shear
tractions between the films and between the film and substrate are proportional to the
gradient of the first curvature invariant, and can also be inferred experimentally.
�DOI: 10.1115/1.2755178�

Keywords: multilayer thin films, nonuniform film temperatures and stresses, nonuniform
system curvatures, nonlocal stress-curvature relations, interfacial shears
Introduction
Substrates formed of suitable solid-state materials may be used

s platforms to support various thin film structures. Integrated
lectronic circuits, integrated optical devices and optoelectronic
ircuits, microelectromechanical systems deposited on wafers,
hree-dimensional electronic circuits, systems-on-a-chip struc-
ures, lithographic reticles, and flat panel display systems are ex-
mples of such thin film structures integrated on various types of
late substrates. The stress buildup in the thin film is important to
he reliability and performance of these devices and systems.

Stoney �1� studied a system composed of a thin film of thick-
ess hf, deposited on a relatively thick substrate, of thickness hs,
nd derived a simple relation between the curvature � of the sys-
em and the stress ��f� of the film as follows:

��f� =
Eshs

2�

6hf�1 − �s�
�1.1�

n the above, the subscripts “f” and “s” denote the thin film and
ubstrate, respectively, and E and � are the Young’s modulus and
oisson’s ratio. Equation �1.1� is called the Stoney formula, and it
as been extensively used in the literature to infer film stress
hanges from experimental measurement of system curvature
hanges �2�.

Stoney’s formula was based on a number of assumptions:

�i� Both the film thickness hf and the substrate thickness hs
are uniform and hf �hs�R, where R represents the char-
acteristic length in the lateral direction �e.g., system radius
R shown in Fig. 1�;
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�ii� The strains and rotations of the plate system are infinitesi-
mal;

�iii� Both the film and substrate are homogeneous, isotropic,
and linearly elastic;

�iv� The film stress states are in-plane isotropic or equibiaxial
�two equal stress components in any two, mutually or-
thogonal in-plane directions� while the out-of-plane direct
stress and all shear stresses vanish;

�v� The system’s curvature components are equibiaxial �two
equal direct curvatures� while the twist curvature vanishes
in all directions; and

�vi� All surviving stress and curvature components are spa-
tially constant over the plate system’s surface, a situation
that is often violated in practice.

Despite the explicitly stated assumptions of spatial stress and
curvature uniformity, the Stoney formula is often, arbitrarily, ap-
plied to cases of practical interest where these assumptions are
violated. This is typically done by applying Stoney’s formula
pointwise, and thus extracting a local value of stress from a local
measurement of the curvature of the system. This approach of
inferring film stress clearly violates the uniformity assumptions of
the analysis and, as such, its accuracy as an approximation is
expected to deteriorate as the levels of curvature nonuniformity
become more severe.

Following the initial formulation by Stoney, a number of exten-
sions have been derived to relax some assumptions. Such exten-
sions of the initial formulation include relaxation of the assump-
tion of equibiaxiality as well as the assumption of small
deformations/deflections. A biaxial form of Stoney formula �with
different direct stress values and nonzero in-plane shear stress�
was derived by relaxing the assumption �v� of curvature equibi-
axiality �2�. Related analyses treating discontinuous films in the
form of bare periodic lines �3� or composite films with periodic
line structures �e.g., bare or encapsulated periodic lines� have also
been derived �4–6�. These latter analyses have removed the as-

sumptions �iv� and �v� of equibiaxiality and have allowed the
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xistence of three independent curvature and stress components in
he form of two, nonequal, direct components and one shear or
wist component. However, the uniformity assumption �vi� of all
f these quantities over the entire plate system was retained. In
ddition to the above, single, multiple, and graded films and sub-
trates have been treated in various “large” deformation analyses
7–10�. These analyses have removed both the restrictions of an
quibiaxial curvature state as well as the assumption �ii� of infini-
esimal deformations. They have allowed for the prediction of
inematically nonlinear behavior and bifurcations in curvature
tates that have also been observed experimentally �11,12�. These
ifurcations are transformations from an initially equibiaxial to a
ubsequently biaxial curvature state that may be induced by an
ncrease in film stress beyond a critical level. This critical level is
ntimately related to the system aspect ratio, i.e., the ratio of in-
lane to thickness dimension and the elastic stiffness. These
nalyses also retain the assumption �vi� of spatial curvature and
tress uniformity across the system. However, they allow for de-
ormations to evolve from an initially spherical shape to an ener-
etically favored shape �e.g., ellipsoidal, cylindrical, or saddle
hapes� that features three different, still spatially constant, curva-
ure components �6,11�.

The above-discussed extensions of Stoney’s methodology have
ot relaxed the most restrictive of Stoney’s original assumption
vi� of spatial uniformity that does not allow film stress and sys-
em curvature components to vary in the thin film/substrate sys-
em. This crucial assumption is often violated in practice, since
lm stresses and the associated system curvatures are nonuni-
ormly distributed. Recently, Huang et al. �13� and Huang and
osakis �14� relaxed the assumption �vi� �and also �iv� and �v�� to

tudy the thin film/substrate system subjected to nonuniform, axi-
ymmetric misfit strain �in thin film� and temperature change �in
oth thin film and substrate�, respectively, while Huang and Ro-
akis �15� and Ngo et al. �16� studied the thin film/substrate sys-
em subject to arbitrarily nonuniform �e.g., nonaxisymmetric� mis-
t strain and temperature. The most important result is that the
lm stresses depend nonlocally on the system curvatures; i.e., they
epend on curvatures of the entire system. The relations between
lm stresses and system curvatures are established for arbitrarily
onuniform misfit strain and temperature change, and such rela-
ions degenerate to Stoney’s formula for uniform, equibiaxial
tresses and curvatures.

Feng et al. �17� relaxed part of the assumption �i� to study the

ig. 1 A schematic diagram of a multilayer thin film/substrate
ystem, showing the cylindrical coordinates „r ,� ,z…
hin film and substrate of different radii. Ngo et al. �18� com-

21022-2 / Vol. 75, MARCH 2008

ded 22 Apr 2008 to 129.105.86.142. Redistribution subject to ASM
pletely relax the assumption �i� to study arbitrarily nonuniform
thickness of the thin film. They derived an analytical relation be-
tween the film stresses and system curvatures that allows for the
accurate experimental inference of film stress from full-field cur-
vature measurements once the film thickness distribution is
known. Brown et al. �19� used two independent types of X-ray
microdiffraction to measure both substrate slope and film stress
across the diameter of an axisymmetric thin film/substrate speci-
men composed of a Si substrate on which a smaller circular W
film island was deposited. The substrate slopes, measured by poly-
chromatic �white beam� X-ray microdiffraction, were used to cal-
culate curvature fields and to, thus, infer the film stress distribu-
tion using both the “local” Stoney formula and the new, nonlocal
relation. The variable film thickness, which was independently
measured, was also an input to the new relation. These were then
compared with the film stress measured independently through
monochromatic X-ray diffraction in the sample to validate the
new analytical relation �18�.

Many thin film/substrate systems involve multiple layers of thin
films. The main purpose of this paper is to extend the above analy-
ses by Huang, Rosakis, and co-workers to a system composed of
multilayer thin films on a substrate subjected to nonuniform tem-
perature distribution. We will relate stresses in each film and sys-
tem curvatures to the temperature distribution, and ultimately de-
rive a relation between the stresses in each film and system
curvatures that would allow for the accurate experimental infer-
ence of film stresses from full-field and real-time curvature mea-
surements.

2 Axisymmetric Temperature Distribution
We first consider a system of multilayer thin films deposited on

a substrate subjected to axisymmetric temperature distribution
T�r�, where r is the radial coordinate �Fig. 1�. The thin films and
substrate are circular in the lateral direction and have a radius R.
The deformation is axisymmetric and is therefore independent of
the polar angle �, where �r ,� ,z� are cylindrical coordinates with
the origin at the center of the substrate �Fig. 1�.

2.1 Governing Equations. Let hfi
�i=1, . . . ,n� denote the

thickness of the ith thin film �Fig. 1�. The total film thickness hf

=�i=1
n hfi

of all n thin films is much less than the substrate thick-
ness hs, and both are much less than R; i.e., hf �hs�R. The
Young’s modulus, Poisson’s ratio, and coefficient of thermal ex-
pansion of the ith film and substrate are denoted by Efi

, � f i
, � f i

, Es,
�s, and �s, respectively.

The substrate is modeled as a plate since it can be subjected to
bending and hs�R. The thin films are modeled as membranes that
have no bending rigidities due to their small thickness hfi

�hs.
Therefore, they all have the same in-plane displacement uf�r� in
the radial direction. The strains are �rr=duf /dr and ���=uf /r. The
stresses in the ith thin film can be obtained from the linear
thermo-elastic constitutive model as

�rr
�i� =

Efi

1 − � f i

2 �duf

dr
+ � f i

uf

r
− �1 + � f i

�� f i
T�

���
�i� =

Efi

1 − � f i

2 �� f i

duf

dr
+

uf

r
− �1 + � f i

�� f i
T� �2.1�

The membrane forces in the ith thin film are

Nr
�f i� = hfi

�rr
�i� N�

�f i� = hfi
���

�i� �2.2�

For a nonuniform temperature distribution T=T�r�, the shear
stress tractions at the film/substrate and film/film interfaces do not
vanish, and are denoted by ��i��r��i=1, . . . ,n� as shown in Fig. 2.

The normal stress tractions �zz still vanish because thin films have
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o bending rigidities. The equilibrium equations for thin films,
ccounting for the effect of interface shear stress tractions, be-
ome

�
dNr

�f1�

dr
+

Nr
�f1� − N�

�f1�

r
− ���1� − ��2�� = 0

dNr
�f2�

dr
+

Nr
�f2� − N�

�f2�

r
− ���2� − ��3�� = 0

]

dNr
�fn�

dr
+

Nr
�fn� − N�

�fn�

r
− ��n� = 0

�2.3�

ubstitution of Eqs. �2.1�–�2.3� and the summation of its left-hand
ide yield

�
i=1

n Efi
hfi

1 − v f i

2 	d2uf

dr2 +
1

r

duf

dr
−

uf

r2
 = ��1� + �
i=1

n Efi
hfi

� f i

1 − v f i

dT

dr

�2.4�

Let us denote the displacement in the radial �r� direction at the
eutral axis �z=0� of the substrate, and w the displacement in the
ormal �z� direction. The forces and bending moments in the sub-
trate are obtained from the linear thermo-elastic constitutive
odel as

Nr
�s� =

Eshs

1 − �s
2�dus

dr
+ �s

us

r
− �1 + �s��sT�

N�
�s� =

Eshs

1 − �s
2��s

dus

dr
+

us

r
− �1 + �s��sT� �2.5�

Mr =
Eshs

3

12�1 − �s
2�
	d2w

dr2 +
�s

r

dw

dr



M� =
Eshs

3

12�1 − �s
2�
	�s

d2w

dr2 +
1

r

dw

dr

 �2.6�

The shear stress ��1� at the film/substrate interface is equivalent
o the distributed axial force ��1��r� and bending moment
hs /2���1��r� applied at the neutral axis �z=0� of the substrate. The
n-plane force equilibrium equation of the substrate then becomes

dNr
�s�

dr
+

Nr
�s� − N�

�s�

r
+ ��1� = 0 �2.7�

he out-of-plane force and moment equilibrium equations are

ig. 2 A schematic diagram of the nonuniform shear traction
istribution at the film/film and film/substrate interfaces
iven by
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dMr

dr
+

Mr − M�

r
+ Q −

hs

2
��1� = 0 �2.8�

dQ

dr
+

Q

r
= 0 �2.9�

where Q is the shear force normal to the neutral axis. Substitution
of Eq. �2.5� into Eq. �2.7� yields

d2us

dr2 +
1

r

dus

dr
−

us

r2 = �1 + �s��s
dT

dr
−

1 − �s
2

Eshs
��1� �2.10�

Elimination of Q from Eqs. �2.8� and �2.9�, in conjunction with
Eq. �2.6�, gives

d3w

dr3 +
1

r

d2w

dr2 −
1

r2

dw

dr
=

6�1 − �s
2�

Eshs
2 ��1� �2.11�

The continuity of displacement across the film/substrate inter-
face requires

uf = us −
hs

2

dw

dr
�2.12�

Equations �2.4� and �2.10�–�2.12� constitute four ordinary differ-
ential equations for uf, us, w, and ��1�.

We can eliminate uf, us, andw from these four equations to
obtain the shear stress at the film/substrate interface in terms of
temperature as

��1� =

�
i=1

n Efi
hfi

1 − � f i

2 ��1 + �s��s − �1 + � f i
�� f i

�

1 + �
i=1

n

4
Efi

hfi

1 − � f i

2

1 − �s
2

Eshs

dT

dr
�2.13�

which is a remarkable result that holds regardless of boundary
conditions at the edge r=R. Therefore, the interface shear stress is
proportional to the gradient of temperature. For uniform tempera-
ture T=constant, the interface shear stress vanishes; i.e., ��1�=0.

Substitution of the above solution for shear stress ��1� into Eqs.
�2.11� and �2.10� yields ordinary differential equations for dis-
placements w and us in the substrate. Their solutions, at the limit
hf �hs are

dw

dr
= 6

1 − �s
2

Eshs
2 �

i=1

n Efi
hfi

1 − � f i

2 ��1 + �s��s − �1 + � f i
�� f i

�
1

r�0

r

	T�	�d	

+
B1

2
r �2.14�

us = �1 + �s��s

1

r�
0

r

	T�	�d	 +
B2

2
r �2.15�

where B1 and B2 are constants to be determined by boundary
conditions. The displacement in the thin films is then obtained
from Eq. �2.12� as

uf = �1 + �s��s

1

r�
0

r

	T�	�d	 + 	B2

2
−

hsB1

4

r �2.16�

The first boundary condition at the free edge r=R requires that
the net force vanish

�
i=1

n

Nr
�f i� + Nr

�s� = 0 at r = R �2.17�
which gives
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B2 = �1 − �s��sT̄ �2.18�

or hf �hs, where T̄= �2 /R2��0
R	T�	�d	=��TdA /
R2 is the aver-

ge temperature over the entire system. The second boundary con-
ition at the free edge r=R is vanishing of net moment, i.e.,

Mr −
hs

2 �
i=1

n

Nr
�f i� = 0 at r = R �2.19�

hich gives

B1 = 6
1 − �s

2

Eshs
2 �

i=1

n Efi
hfi

1 − � f i

2 � �1 + v f i
��1 − vs�

1 + vs
��s − � f i

� − �vs − � f i
��s�T̄

�2.20�

2.2 Stresses in Multilayer Thin Films and System
urvatures. The system curvatures are related to the out-of-plane
isplacement w by �rr=d2w /dr2 and ���=dw /rdr. Their sum is
iven by

�rr + ��� = 12
1 − �s

Eshs
2 �A�T̄ +

1 + �s

2
A���T − T̄�� �2.21�

here T̄ is the average temperature in the thin film/substrate sys-
em, and

A� 
 �
i=1

n Efi
hfi

1 − v f i

��s − � f i
�

A�� 
 �
i=1

n Efi
hfi

1 − v f i

2 ��1 + �s��s − �1 + � f i
�� f i

� �2.22�

he first term on the right-hand side corresponds to the �constant�
verage temperature T̄, while the second term gives the deviation

− T̄ from the constant temperature.
The difference between two system curvatures is

�rr − ��� = 6
1 − �s

2

Eshs
2 A���T −

2

r2�
0

r

	T�	�d	� �2.23�

s compared to the system curvatures for a single thin film �14�,
qs. �2.21� and �2.23� can be obtained by replacing the single film
roperties by the sum of multilayer film properties in Eq. �2.22�.

The stresses in the ith thin film can be obtained from the in-
lane displacement uf as

�rr
�f i� + ���

�f i� =
Efi

1 − � f i

�2��s − � f i
�T̄ + ��1 + �s��s − 2� f i

��T − T̄��

�2.24�

�rr
�f i� − ���

�f i� =
Efi

1 + � f i

�1 + �s��s�T −
2

r2�
0

r

	T�	�d	�
�2.25�

hey are identical to Huang and Rosakis �14� for a single thin film
f the Young’s modulus, Poisson’s ratio, and coefficient of thermal
xpansion are substituted by Ei, vi, and �i of the ith thin film,
espectively. The shear stresses along the film/film or film/
ubstrate interface can be obtained from the equilibrium equation
2.3�. Specifically, the shear stress of ith thin film is given by

��i� = �
j=i

n Ef j
hf j

1 − v f j

2 ��1 + vs��s − �1 + v f j
�� f j

�
dT

dr
�2.26�
here the summation is from the ith thin film to the last �nth�.
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3 Extension of Stoney Formula for a Multilayer Thin
Film/Substrate System Subjected to Axisymmetric Tem-
perature Distribution

We extend the Stoney formula for a multilayer thin film/
substrate system by eliminating the nonuniform axisymmetric
temperature in order to establish a direct relation between the
stresses in the ith thin film and system curvatures. Both �rr−��� in
Eq. �2.23� and �rr

�f i�−���
�f i� in Eq. �2.25� are proportional to T

− �2 /r2��0
r	T�	�d	, and therefore can be directly related by

�rr
�f i� − ���

�f i� =
Eshs

2�s

6�1 − vs�

Efi

1 + v f i

�rr − ���

A��

�3.1�

where A�� is given in Eq. �2.22�. We define the average system
curvature �rr+��� as

�rr + ��� =
1


R2 � �
A

��rr + ����	d	d� =
2

R2�
0

R

	��rr + ����d	

�3.2�

which can be related to the average temperature T̄ by averaging
both sides of Eq. �2.21�, i.e.,

�rr + ��� = 12
1 − �s

Eshs
2 A�T̄ �3.3�

where A� is given in Eq. �2.22�. The deviation from the average
curvature �rr+���−�rr+��� can be related to the deviation from

the average temperature T− T̄ from Eq. �2.21� as

�rr + ��� − �rr + ��� = 6
1 − �s

2

Eshs
2 A���T − T̄� �3.4�

Elimination of temperature deviation T− T̄ and average tempera-

ture T̄ from Eqs. �3.3�, �3.4�, and �2.24� gives the sum of stresses
in the ith thin film in terms of curvature as

�rr
�f i� + ���

�f i� =
Eshs

2

6�1 − �s�

Efi

1 − v f i

��s − � f i

A�

�rr + ���

+
�1 + vs��s − 2� f i

�1 + vs�A��

��rr + ��� − �rr + �����
�3.5�

Equations �3.1� and �3.5� provide direct relations between stresses
in each thin film and system curvatures. Stresses at a point in each
thin film depend not only on curvatures at the same point �local
dependence�, but also on the average curvature in the entire sub-
strate �nonlocal dependence�.

The interface stress ��i� can also be directly related to system
curvatures via

��i� =
Eshs

2

6�1 − vs
2�

�
k=i

n Efk
hfk

1 − v fk

2 ��1 + vs��s − �1 + v fk
�� fk

�

A��

d��rr + ����
dr

�3.6�

This provides a remarkably simple way to estimate the interface
shear stress from radial gradients of the two nonzero system cur-
vatures.

4 Arbitrary Temperature Distribution
Similar to Huang and Rosakis �15� for a single thin film on a

substrate, we expand the arbitrary nonuniform temperature distri-

bution T�r ,�� to the Fourier series:
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T�r,�� = �
m=0

�

Tc
�m��r�cos m� + �

m=0

�

Ts
�m��r�sin m� �4.1�

here

Tc
�0��r� =

1

2

�

0

2


T�r,��d�

Tc
�m��r� =

1



�

0

2


T�r,��cos m�d�

nd

Ts
�m��r� =

1



�

0

2


T�r,��sin m�d� �m � 1�

he analysis is similar to Huang and Rosakis �15�, except it is
ow for multilayer thin films on a substrate.
The system curvatures are

0 0
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�rr =
�2w

�r2 ��� =
1

r

�w

�r
+

1

r2

�2w

��2 �r� =
�

�r
	1

r

�w

��



The sum of system curvatures is related to the temperature by

�rr + ��� = 12
1 − �s

Eshs
2 �A�T̄ +

1 + �s

2
A���T − T̄� + �1 + �s�	 4

3 + �s
A�

− A��
�
m=1

�

�m + 1�
rm

R2m+2�cos m��
0

R

	m+1Tc
�m��	�d	

+ sin m��
0

R

	m+1Ts
�m��	�d	�� �4.2�

where T̄= �2 /R2��0
R	Tc

�0��	�d	= �1 /
R2���AT�	 ,
�dA is the av-
erage temperature over the entire area A of the thin film, dA
=	d	d
, and A� and A�� are given in Eq. �2.22�.

The difference between two curvatures, i.e., �rr−���, and the

twist �r� are given by
�rr − ��� = 6
1 − �s

2

Eshs
2 A���T −

2

r2�
0

r

	Tc
�0�d	 − �

m=1
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m + 1
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0

r

	m+1Tc
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0

r

	m+1Ts
�m�d	


− �
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�
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r

R
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r

R

	1−mTs
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� + 6

1 − �s
2

Eshs
2 	 4

3 + �s
A� − A��
�
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Rm+2 �m	 r

R
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R

m−2�	cos m��

0

R

	m+1Tc
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0

R

	m+1Ts
�m�d	
 �4.3�

�r� = 3
1 − �s

2

Eshs
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m + 1

rm+2 	sin m��
0

r
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0
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 �4.4�

s compared to the system curvatures for a single thin film �15�, Eqs. �4.2�–�4.4� can be obtained by replacing the film properties by
he sum of multilayer film properties in Eqs. �2.22�.

The sum of stresses �rr
�f i�+���

�f i� in the ith thin film is related to the temperature by

�rr
�f i� + ���

�f i� =
Efi

1 − � f i

�2��s − � f i
�T̄ + ��1 + �s��s − 2� f i
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R2m+2rm	cos m��
0

R

	m+1Tc
�m�d	

+ sin m��
0

R

	m+1Ts
�m�d	
� �4.5�

he difference between stresses, ie., �rr
�f i�−���

�f i�, and shear stress �r�
�f i� are given by

�rr
�f i� − ���

�f i� =
Efi

1 + � f i

�1 + �s��s�T −
2

r2�
0

r

	Tc
�0�d	 − �

m=1

�
m + 1

rm+2 	cos m��
0

r

	m+1Tc
�m�d	 + sin m��

0
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�
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− 1�rm−2	cos m��
r

R
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�m�d	 + sin m��

r
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Rm+2 �m	 r

R

m

− �m − 1�	 r
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�	cos m��R
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� �4.6�
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quations �4.5�–�4.7� are identical to Huang and Rosakis �15� for a single thin film if the Young’s modulus, Poisson’s ratio, and
oefficient of thermal expansion are substituted by Ei, �i, and �i of the ith thin film, respectively.

The shear stresses �r
�i� and ��

�i� at the film/film and film/substrate interfaces are related to the temperature by

�r
�i� = �

j=i

n Ef j
hf j

1 − � f j

2 ��1 + �s��s − �1 + � f j
�� f j

�
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�m�d	
 �4.9�
here the summation is from the ith thin film to the last �nth�.

Extension of Stoney Formula for a Multilayer Thin
ilm/Substrate System Subjected to Arbitrary Tem-
erature Distribution
We extend the Stoney formula for a multilayer thin film/

ubstrate system by establishing the direct relation between the
tresses in each thin film and system curvatures. Similar to Huang
nd Rosakis �15� for a single thin film, we first define the coeffi-
ients Cm and Sm, related to the system curvatures by

Cm =
1


R2 � �
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��rr + ����		

R

m

cos m
dA

Sm =
1


R2 � �
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��rr + ����		

R

m

sin m
dA �5.1�

here the integration is over the entire area A of the thin film, and
A=	d	d
. Elimination of temperature gives the stresses in each
hin film in terms of system curvatures by

�rr
�f i� − ���

�f i� =
Eshs

2
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1 + � f i

�s

A��
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�rr
�f i� + ���

�f i� =
Eshs

2
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��s − � f i

A�
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− 2
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m

�Cm cos m� + Sm sin m���
�5.4�

where �rr+���=C0= �1 /
R2���A��rr+����dA is the average cur-
vature over entire area A of the thin film, and A� and A�� are
given in Eq. �2.22�. Equations �5.2�–�5.4� provide direct relations
between individual film stresses and system curvatures. It is im-
portant to note that stresses at a point in each thin film depend not
only on curvatures at the same point �local dependence�, but also
on the curvatures in the entire substrate �nonlocal dependence� via
the coefficients Cm and Sm.

The shear stresses �r
�i� and ��

�i� at the film/film and film/substrate
interfaces can also be directly related to system curvatures via

�r
�i� =

Eshs
2
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his provides a way to determine the interface shear stresses from
he system curvatures. It also displays a nonlocal dependence via
he coefficients Cm and Sm.

Concluding Remarks
The analytical solution is obtained for a multilayer thin film/

ubstrate system subjected to arbitrary temperature distribution.
he stresses in each thin film and system curvatures are obtained

n terms of the temperature. The direct relation between the
tresses in each thin film and system curvatures is also obtained.
he dependence of the film stresses on curvatures is not generally
local,” i.e., the stress components at a point on the film will
epend on both the local value of the curvature components �at
he same point� and on the value of curvatures of all other points
nonlocal dependence�.

The presence of nonlocal contributions in such relations also
as implications regarding the nature of diagnostic methods
eeded to perform wafer-level film stress measurements. Notably,
he existence of nonlocal terms necessitates the use of full-field

ethods capable of measuring curvature components over the en-
ire surface of the plate system �or wafer�. Furthermore, measure-

ent of all independent components of the curvature field is nec-
ssary. This is because the stress state at a point depends on
urvature contributions from the entire plate surface.

The nonuniform temperature distribution also results in shear
tresses along the film/film and film/substrate interfaces. The re-
ation between the shear stresses and system curvatures provides
n effective method to estimate the shear stresses. Since film
ournal of Applied Mechanics

ded 22 Apr 2008 to 129.105.86.142. Redistribution subject to ASM
delamination is a commonly encountered form of failure during
wafer manufacturing, the ability to estimate the level and distri-
bution of such stresses from wafer-level metrology might prove to
be invaluable in enhancing the reliability of such systems.
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